SANTA CLARA, Calif. – Globalfoundries and Samsung are in a dead heat to get their first 14 nm production wafers out before the end of the year, aiming to beat rival Taiwan Semiconductor Manufacturing Co. by as much as a year. Meanwhile, an IBM building in New York sits empty, waiting for an extreme ultraviolet (EUV) lithography machine to light the way to the industry’s longer-term future.
That was the picture from the
annual event here of the trio’s Common Platform alliance.
The companies said they now expect EUV will not be ready until the 7-nm node. It remains their primary bet on the future of chip making, but it will require advances in physics on several fronts to succeed, said a top IBM technologist.
“We’re in the most complex business in the history of human kind,” said Mike Noonen, vice president and marketing at sales at Globalfoundries.
Mike Cadigan, head of IBM’s semiconductor group, told New York state officials he needed before the end of 2012 a new building to house the latest EUV prototype tool. Now the building is complete, but the tool may not arrive until April or later.
“The industry voted [with investments in 2012] that we need to make this work, but there continues to be a lot of unknowns,” Cadigan told press. “You can continue to view EUV as next to impossible, but the industry needs it,” he said.
Developers improved the strength of EUV’s laser light tenfold to 30W, but they still need to improve it another tenfold to 250W before it is ready, said Gary Patton, a chief technologist in IBM’s chip group.
In addition, engineers need to eliminate problems in resists, mask defects and inspection processes. Patton compared that to searching for golf balls in an area as large as one tenth of the state of California.
Click on image to enlarge.IBM detailed physics challenges ahead for EUV.