By starting with liquid electrolytes and then transforming them into solid polymers inside the electrochemical cell, the researchers take advantage of both liquid and solid properties to overcome key limitations in current battery designs.
"Imagine a glass full of ice cubes: Some of the ice will contact the glass, but there are gaps," said Qing Zhao, a postdoctoral researcher and lead author on the study. "But if you fill the glass with water and freeze it, the interfaces will be fully coated, and you establish a strong connection between the solid surface of the glass and its liquid contents. This same general concept in a battery facilitates high rates of ion transfer across the solid surfaces of a battery electrode to an electrolyte without needing a combustible liquid to operate."